A maneira estranha de uma média móvel furões a tendência de uma massa de medições confusas pode ser visto por traçar a média móvel de 10 dias, juntamente com os pesos diários originais, mostrados como pequenos diamantes. As médias móveis utilizadas até agora dão igual significado a todos os dias na média. Este neednt seja assim. Se você pensar nisso, não faz muito sentido, especialmente se você estiver interessado em usar uma média móvel de longo prazo para suavizar os choques aleatórios na tendência. Suponha que você está usando uma média móvel de 20 dias. Por que deve seu peso quase três semanas atrás ser considerado igualmente relevante para a tendência atual como o seu peso esta manhã? Várias formas de médias móveis ponderadas foram desenvolvidas para resolver esta objeção. Em vez de apenas somar as medidas para uma seqüência de dias e dividir pelo número de dias, em uma média móvel ponderada cada medida é primeiro multiplicado por um fator de peso que difere de dia para dia. A soma final é dividida, não pelo número de dias, mas pela soma de todos os fatores de peso. Se fatores de peso maiores forem usados para dias mais recentes e fatores menores para medidas mais adiantadas no tempo, a tendência será mais responsiva a mudanças recentes sem sacrificar a suavização proporcionada por uma média móvel. Uma média móvel não ponderada é simplesmente uma média móvel ponderada com todos os fatores de peso iguais a 1. Você pode usar todos os fatores de peso que você gosta, mas um determinado conjunto com o monicker jawbreaking Exponentially Smoothed Moving Average provou ser útil em aplicações que vão desde radar de defesa aérea Para a negociação do mercado de barriga de porco de Chicago. Vamos colocá-lo para o trabalho em nossa barriga também. Este gráfico compara os fatores de peso para uma média movimentada de 20 dias exponencialmente suavizada com uma média móvel simples que pesa todos os dias igualmente. A suavização exponencial dá à medida de hoje duas vezes o significado que a média simples atribuiria, a medida de ontem um pouco menos do que isso, e cada dia sucessivo menos do que seu antecessor com o dia 20 contribuindo apenas 20 tanto para o resultado como com uma média móvel simples. Os fatores de peso em uma média móvel exponencialmente suavizada são poderes sucessivos de um número chamado constante de suavização. Uma média móvel exponencialmente suavizada com uma constante de suavização de 1 é idêntica a uma média móvel simples, uma vez que 1 para qualquer potência é 1. As constantes de suavização inferiores a 1 pesam os dados recentes mais fortemente, com a tendência para as medições mais recentes a aumentar à medida que a suavização Constante diminui em direção a zero. Se a constante de suavização exceder 1, os dados mais antigos são mais pesados do que as medidas recentes. Este gráfico mostra os factores de peso resultantes de valores diferentes da constante de alisamento. Observe como os fatores de peso são todos 1 quando a constante de suavização é 1. Quando a constante de suavização está entre 0,5 e 0,9, o peso dado a dados antigos cai tão rapidamente em comparação com medições mais recentes que não há necessidade de restringir a média móvel para Um número específico de dias podemos calcular a média de todos os dados que temos, desde o início, e deixar os fatores de peso calculados a partir da constante de suavização automaticamente descartar os dados antigos, pois se torna irrelevante para a tendência atual.
No comments:
Post a Comment